skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qian, Xianghong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Technologies for large‐scale manufacturing of viral vectors for gene therapies, such as tangential flow filtration and membrane chromatography, are under development. In these early stages of process development, techno‐economic analyses are useful for identifying membrane properties yielding the greatest impact on process performance. In this study, we adapted a techno‐economic framework used for monoclonal antibody capture for adeno‐associated viral vector purification. We added mechanistic models to simulate flux decline during harvesting and separating full and empty capsids during polishing. Graphical user interfaces were added to help users explore the design search space. We selected a base process and manipulated selected variables to see their impact on large‐scale manufacturing performance. These sensitivity analyses revealed that, under the selected process conditions, increasing module capacity reduces cost of goods more effectively than increasing operational flux in tangential flow membrane filtration modules for virus harvesting. Membrane chromatography columns with relatively low dynamic binding capacity (DBC) and short residence time (RT) offered similar or better economic performance than those with high DBC and long RT. Additionally, the difference in equilibrium solid‐phase concentration between full and empty capsids as a function of salt concentration significantly affects purity. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available April 1, 2026
  3. Free, publicly-accessible full text available May 1, 2026
  4. Background: Biologics is an exciting and growing area of medicine. Within the larger field of biologics, the use of viral vectors and virus-like particles (VLPs) is increasingly common, making it crucial to develop innovative and practical unit operations for the related purification process. Objective: Some scientists and engineers propose that membrane-based downstream virus purification (MVP) platforms would allow for more scalable and cost-effective production of these critical particles. However, the so-cial, political, and ethical implications of these advancements remain largely unex-plored. This paper aims to explore various pivotal facets of MVP technology govern-ance and regulations within the U.S. context, including (1) government policy ar-rangements related to the implementation of the technologies, (2) stakeholder atti-tudes, policy preferences, and behaviors, and (3) the fundamental factors that shape these attitudes, policy preferences, and behaviors. Methods: In doing so, we analyze publicly available federal and state government documents pertaining to biomanu-facturing, healthcare, and legislative attempts. Additionally, we will perform a stake-holder analysis on relevant industries, healthcare service providers, and recipients. Conclusions: Our goal is to outline the socio-political, ethical, and regulatory factors pertaining to the regulation and governance of these technologies. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  5. Virus filtration is used to ensure the high level of virus clearance required in the manufacture of biopharmaceutical products such as monoclonal antibodies. Flux decline during virus filtration can occur due to the formation of reversible aggregates consisting of self-assembled monomeric monoclonal antibody molecules, particularly at high antibody concentrations. While size exclusion chromatography is generally unable to detect these reversible aggregates, dynamic light scattering may be used to determine their presence. Flux decline during virus filtration may be minimized by pretreating the feed using a membrane adsorber in order to disrupt the reversible aggregates that are present. The formation of reversible aggregates is highly dependent on the monoclonal antibody and the feed conditions. For the pH values investigated here, pretreatment of the feed using a hydrophobic interaction membrane adsorber was the most effective in minimizing flux decline during virus filtration. Ion exchange membranes may also be effective if the monoclonal antibody and membrane are oppositely charged. Consequently, the effectiveness of ion exchange membrane adsorbers is much more dependent on solution pH when compared to hydrophobic interaction membrane adsorbers. Size based prefiltration was found to be ineffective at disrupting these reversible aggregates. These results can help guide the development of more effective virus filtration processes for monoclonal antibody production. 
    more » « less
    Free, publicly-accessible full text available January 17, 2026
  6. Regulatory authorities place stringent guidelines on the removal of contaminants during the manufacture of biopharmaceutical products. Monoclonal antibodies, Fc-fusion proteins, and other mammalian cell-derived biotherapeutics are heterogeneous molecules that are validated based on the production process and not on molecular homogeneity. Validation of clearance of potential contamination by viruses is a major challenge during the downstream purification of these therapeutics. Virus filtration is a single-use, size-based separation process in which the contaminating virus particles are retained while the therapeutic molecules pass through the membrane pores. Virus filtration is routinely used as part of the overall virus clearance strategy. Compromised performance of virus filters due to membrane fouling, low throughput and reduced viral clearance, is of considerable industrial significance and is frequently a major challenge. This review shows how components generated during cell culture, contaminants, and product variants can affect virus filtration of mammalian cell-derived biologics. Cell culture-derived foulants include host cell proteins, proteases, and endotoxins. We also provide mitigation measures for each potential foulant. 
    more » « less
  7. One major challenge in the development of nanoparticle-based therapeutics, including viral vectors for the delivery of gene therapies, is the development of cost-effective purification technologies. The objective of this study was to examine fouling and retention behaviors during the filtration of model nanoparticles through membranes of different pore sizes and the effect of solution conditions. Data were obtained with 30 nm fluorescently labeled polystyrene latex nanoparticles using both cellulosic and polyethersulfone membranes at a constant filtrate flux, and both pressure and nanoparticle transmission were evaluated as a function of cumulative filtrate volume. The addition of NaCl caused a delay in nanoparticle transmission and an increase in fouling. Nanoparticle transmission was also a function of particle hydrophobicity. These results provide important insights into the factors controlling transmission and fouling during nanoparticle filtration as well as a framework for the development of membrane processes for the purification of nanoparticle-based therapeutics. 
    more » « less